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We use large scale simulations to study interacting particles in two dimensions in the presence of both an ac
drive and quenched disorder. As a function of ac amplitude, there is a crossover from a low drive regime where
the colloid positions are highly disordered to a higher ac drive regime where the system dynamically reorders.
We examine the coarsening of topological defects formed when the system is quenched from a disordered low
ac amplitude state to a high ac amplitude state. When the quench is performed close to the disorder-order
crossover, the defect density decays with time as a power law with �=1/4 to 1/3. For deep quenches, in which
the ac drive is increased to high values such that the dynamical shaking temperature is strongly reduced, we
observe a logarithmic decay of the defect density into a grain boundary dominated state. We find a similar
logarithmic decay of defect density in systems containing no pinning. We specifically demonstrate these effects
for vortices in thin film superconductors, and discuss implications for dynamical reordering transition studies
in these systems.
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I. INTRODUCTION

There are a wide variety of systems that can be modeled
as an elastic lattice driven over an underlying random
quenched substrate by an external force. Examples include
moving vortex lattices in type II superconductors �1–4�, slid-
ing charge density wave systems �5�, models of atomic fric-
tion �6�, colloidal particles moving over a rough substrate
�7�, driven Wigner crystals, and stripe forming systems �8�.
Typically, when the quenched disorder is strong, the elastic-
ity of the system breaks down and topological defects pro-
liferate in the form of dislocations and disclinations. It has
also been shown that when a sufficiently large external drive
is applied, the system can exhibit a dynamical reordering
process where the density of topological defects is sharply
reduced in the presence of a high dc drive �1,2,4�. Con-
versely, if the external drive is reduced from a high value
where the system is ordered, the underlying disorder acts as
a fluctuating force on the moving particles which increases
as the drive is lowered, causing the system to dynamically
melt via the proliferation of defects �1�. This dynamical re-
ordering effect has been demonstrated for vortices in super-
conductors through simulations �1,2�, transport �3�, and im-
aging experiments �4�, and has also been verified for sliding
charge density waves �5�, colloids �7�, and electron crystals
�8�.

Experiments have produced evidence that an applied ac
drive can also induce a dynamical ordering transition in vor-
tex systems �10�. Further, simulations with various types of
ac drives have shown that the vortex lattice can reorder and
that the reordered lattice is aligned in the direction of the ac
drive �9�.

Since these driven systems show both ordered and disor-
dered phases as a function of external drive, it is also pos-
sible to study the dynamics of a quench from either the or-
dered regime to the disordered regime or the converse. An
open question is how the density of topological defects de-
cays if the system is quenched from a regime where the
steady state is disordered to a regime where it is ordered,

such as by suddenly changing an external ac or dc drive.
The decay of topological defects after a quench has been

studied in systems without quenched disorder through both
simulations �14–17� and experiments on convection and
electroconvection in fluids �18,19�. In general in these sys-
tems, the quench is performed between ordered and disor-
dered phases that are separated by a continuous phase tran-
sition. A number of these studies find that the density of
defects, or of grain boundaries which are comprised of de-
fects, decays as a power law t−�, where the exponent �
=1/5, 1 /4 �14,18�, or 1 /3 �15–17,19�. The different expo-
nents that are obtained depend on the model of the depth of
the quench.

It has also been shown that in some cases the defects form
grain boundaries, and that there is a tendency for the system
to create its own intrinsic pinning of the grain boundaries
�16�. This can lead to glassy effects �16�, and in this case the
defect density decays very slowly or logarithmically with
time rather than as a power law. Recent experiments with
colloidal particles which form a triangular lattice in equilib-
rium showed that in a system with a large number of defects,
the dislocations coarsen into grain boundaries and the defect
density decays logarithmically with time rather than as a
power law �20�. Simulations of two-dimensional vortex lat-
tices driven with ac drives over quenched disorder also pro-
vided evidence that the defect density decays logarithmically
with time; however, these data were very noisy �9�.

We note that in the absence of a dc or ac drive, it has been
found that a vortex lattice does not reorder into a crystal in
the presence of disorder. Instead, if the disorder is weak, the
system is dominated by grain boundaries whose motion be-
comes frozen �11,12�. Similar behavior occurs for a small
number of strong pinning sites �13�.

Here, we address how the density of topological defects
decays in the presence of quenched disorder when the ac
driving force is suddenly changed. Such a system can be
realized readily in experiment for vortices interacting with
random disorder and an oscillatory applied current.
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Simulations of quench dynamics generally employ con-
tinuum models such as the Swift-Hohenberg model. A
complementary approach which we adopt here is to model
the individual particles of the elastic lattice directly, and al-
low the topological defects to emerge naturally from particle
rearrangements. The drawback to such an approach is that
very large systems are needed to produce reasonable statis-
tics for the defect densities. Recent advances in computa-
tional speed have made it possible to access the defect den-
sity over long periods of time with particle based simulations
and obtain defect numbers that are comparable with those of
other simulation methods. An additional benefit of the par-
ticle based method is that processes such as effective pinning
due to the ordering of the system into a triangular lattice are
readily captured.

II. SIMULATION

We consider elastic lattices interacting with quenched dis-
order in two dimensions for the specific cases of vortices in
thin-film type II superconductors and charged colloids. In
both cases, the equilibrium configuration of the N=6000 re-
pulsive overdamped particles in the absence of disorder and
temperature is a defect-free triangular lattice. Particle i obeys
the overdamped equation of motion

dri

dt
= �

j�i

N

fij
pp + fp + fac. �1�

Here the interaction force between particles a distance rij
apart is fij

pp=−�iU�rij�r̂ij, where U�rij�=ln�rij� for vortices in
superconducting films, and U�rij�=exp�−rij� /rij for colloids.
The force fp from the disordered substrate is exerted by Np
randomly placed parabolic pinning sites of radius rp=0.2 and
strength fp. An external ac force fac=A sin��t�x̂ is applied to
all particles. We consider only the T=0 case, so that the only
source of intrinsic noise is the fluctuations caused when the
particles move over the quenched disorder.

III. DYNAMICAL REORDERING WITH AC DRIVES

We first identify where the disordered and ordered phases
occur as a function of pinning strength, pinning density, and
ac drive parameters. We slowly increase the magnitude of the
ac force, A, and measure the density of topological defects
by determining the fraction Pd of particles that are not six-
fold coordinated. In a triangular lattice, Pd=0. The regimes
we observe can also be distinguished via time-dependent
fluctuations in Pd. At low A, a disordered pinned phase ap-
pears in which the particles remain mostly immobile and Pd
is roughly constant with time. For intermediate A, there is a
disordered plastic flow phase where only a portion of the
particles are moving. At high A, the system orders into a
smectic-type state where the lattice aligns in the direction of
the drive and there are only a small number of dislocations
present which have aligned Burgers vectors. These results
are consistent with those obtained in simulations with slowly
increasing or decreasing dc drives �1,2�.

In Fig. 1�a� we plot the density of defects Pd vs A / fp for
superconducting vortices with fixed pinning density �p=1.3,
pinning strength fp=1.5, and ac drive frequency �=3
�10−4. We normalize A by fp so that the crossover from the
disordered phase to the ordered phase occurs near A / fp
=1.0. For A / fp�1.0 the system is strongly disordered and a
large fraction of the particles is not sixfold coordinated. For
A / fp�1.3 the system orders and the density of defects is
strongly reduced. The disorder to order crossover occurs for
a wide range of parameters. In Fig. 1�b� we plot the cross-
over line Ac / fp from the disordered to the ordered state vs ac
drive frequency � for fixed fp. As � is lowered, a larger A
must be applied to order the system. For high �, the cross-
over saturates near Ac / fp=1.3. In Fig. 1�c� we plot Ac vs fp at
fixed �. Here, Ac increases roughly linearly with fp.

IV. DEFECT DECAY AFTER A QUENCH
OF THE AC DRIVE

We study the effect of a sudden quench by abruptly
changing A from the low drive disordered regime to a high
drive value A* where the steady state would be ordered. The
defects present in the disordered phase coarsen after A is
changed. We first consider the case A*�Ac. In Fig. 2 we
show the real space time evolution of the coarsening of the
defects for the system in Fig. 1�a� with fp=1.5 where A / fp
=0.25 is suddenly changed to A* / fp=2.0. In this case,
Ac / fp=1.3. The initial strongly disordered state is illustrated
in Fig. 2�a�, and the defects in the Delaunay triangulation are
highlighted in black. In Fig. 2�b� at time t=1�104 a large
portion of the defects has annihilated and some grain bound-
ary structures appear. In Fig. 2�c� at t=7�104 the ordered
domains are larger, while in Fig. 2�d� �t=4.5�105� all of the
grain boundaries are gone and only a small number of iso-

FIG. 1. �a� Pd vs A / fp, for fixed fp=1.5 and �=3�10−4. �b�
Ac / fp vs � at fixed fp=1.5. �b� Ac vs fp at fixed �=3�10−4.
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lated dislocations are present. The system is also aligned in
the x direction with the ac drive. The remaining isolated
dislocations do not annihilate with time when we continue
the simulation over a longer interval.

In Fig. 3�a� we plot the time dependent defect density
Pd�t� for the system in Fig. 1�a� and Fig. 2. Here Pd�t� de-
cays as 1/ t� at long times with � very close to 1/4. The

dashed line is a fit over three decades with �=0.25. Since the
exponent is small, it may be difficult to distinguish a loga-
rithmic decay from a power law decay. In the inset to Fig.
3�a� we plot Pd�t� on a linear-log scale which would give a
straight line if the decay was purely logarithmic. A logarith-
mic decay can only be fit at shorter times, whereas the power
law fit is clearly better at the longer times. In Fig. 3�b� we
show Pd�t� for the same system in Fig. 1�a� when A* / fp
=4.0. In this case we find a similar long time power law
decay of Pd�t�; however, the decay is faster than in Fig. 3�a�
with �=0.33 as indicated by the dashed line. In the inset of
Fig. 3�b� we plot the curve on a linear-log scale, which
shows that the long time behavior is consistent with a power
law rather than a logarithmic decay. As A* is increased fur-
ther, the exponent � remains close to 0.33; however, at very
large A* the grain boundaries do not completely anneal.

The power law decay in the defect density with exponent
1 /5���1/3 is consistent with the exponents observed in
quench studies of continuum simulations �14–17� and con-
vection experiments �18,19�. The change of the exponent
with A* likely reflects the different effective pinning and de-
fect production rates for different values of A*. Studies of
particles driven with a dc force over quenched disorder have
found that even at T=0 the particles experience an effective
shaking temperature Ts due to the randomness of the disor-
der. This shaking temperature varies inversely with the aver-
age particle velocity, Ts	1/v �1�, so at higher velocities the
shaking effect is reduced. When A* is only slightly higher
than Ac, the effective temperature is high enough both to
create and to destroy defects, so the overall rate of defect
annihilation is slower. For higher A* values, the shaking tem-
perature is lower, which reduces the rate at which new de-
fects are created; however, the shaking temperature is still
large enough to permit a significant amount of thermally ac-
tivated defect hopping to occur, so the net rate of defect
annihilation is higher. We note that if A* is very large, the net
defect annihilation rate decreases because the defect mobility
from the shaking temperature is considerably reduced.

When A* is much larger than the crossover value, the
effective shaking temperature is very low since the average
velocity of the particle is larger. Additionally, it was shown
in the work of Boyer and Viñals �16� that defects and grain
boundaries can be pinned effectively by the underlying pat-
tern that the system forms. This pinning can lead to long time
configurations that do not completely order and have very
slow dynamics. For the particular system studied in Ref.
�16�, the pinning was caused when the ordered regime
formed stripes. In our system the ordered phase is a triangu-
lar lattice rather than a stripe pattern; however, this still gen-
erates an effective periodic potential through which the de-
fects and grain boundaries move. When the effective shaking
temperature is low, activated motion of defects is suppressed.
In Fig. 4 we show the real space evolution of the coarsening
of the defects for the same system in Fig. 1�a� with A / fp
=0.25 quenched to A* / fp=12.0. In Fig. 4�a� we illustrate the
configuration close to the start of the quench at t=200 where
a large number of defects are present. At long times, the
defect density saturates and a grain boundary network re-
mains, as shown in Fig. 4�b� for t=2�105. These grain
boundaries show no motion over extended periods of time,

FIG. 2. Delaunay triangulation showing defect coarsening for
the system in Fig. 1�a� at A* / fp=2.0. �a� Initial state at t=0; �b�
t=1�104; �c� t=7�104; �d� t=4.5�105.

FIG. 3. �a� Pd�t� for A* / fp=2.0 for the system in Fig. 2 with
fp=1.5. Dashed line: power law fit to 1/ t� with �=0.25. Inset:
linear-log plot. �b� Pd�t� for the same system with A* / fp=4.0.
Dashed line: power law fit with �=0.33. Inset: linear-log plot.
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indicating that they are effectively pinned by the potential
created by the triangular ordering of the particles.

In Fig. 5�a� we plot Pd�t� for the same system in Fig. 1�a�
and Fig. 4, where A* / fp=12.0. Here the decay is not well fit
by a power law, as shown by the inset. There is a regime at
intermediate times that can be fit to a logarithmic decay with
Pd�t�=a ln�t�+b, as indicated by the dashed line. At longer
times, the decay slows as the grain boundaries form.
Quenches with even higher A* give very similar results. We
find similar behavior for the case of colloidal particles, as
illustrated in Fig. 5�b� for the same parameters; however, we
observe a much stronger arrest of the decay at long times.
The final configurations in the colloidal case are also grain
boundary structures. In the inset of Fig. 5�b� a log-log plot
indicates that the data cannot be fit by a power law. Recent
experiments with colloidal particles in two dimensions where
a mechanical shaking was applied produced a logarithmic
decay in the length of the grain boundaries over two decades

of time. In some cases, a long time defect saturation has also
been observed �20�. We note that for smaller A* in the col-
loidal system, we obtain the same power law decays found
for the vortex system.

V. EFFECTS OF VARIED DISORDER STRENGTH, AC
DRIVE FREQUENCY, AND SYSTEM SIZE

We next consider the effects of varying other parameters.
We focus on the case with A / fp=4.0 where there is a power
law decay with an exponent close to 0.25.

We first consider whether the exponent for the decay of
the defect density is affected by variations in the system size.
In Fig. 6 we plot the defect decay for systems with the same
parameters as in Fig. 3�b�, fp=1.5, A* / fp=4, and �=3
�10−4 for sizes of L=48, 36, and 24. The dashed line indi-
cates a fit to 1/ t� for �=0.25. The exponent does not change
with system size, although the smaller system shows more
fluctuations due to the smaller overall number of defects.
This indicates that the system sizes we are using are large
enough to avoid finite size effects.

We next consider the effect of changing the disorder
strength fp. As noted earlier, if the final ac amplitude is large,
the defect decay appears to have a logarithmic form and the
system reorders to a grain boundary dominated state rather
than to a state where all the remaining defects are aligned in
the direction of the ac drive. This occurs when the final ac
drive is large enough that the effective pinning is no longer
felt by the rapidly moving particles, and implies that if the
pinning is absent, the defects will decay in a logarithmic
fashion to a grain boundary dominated state. In Fig. 7 we
plot Pd�t� for the same system as in Fig. 6 for L=36 and
fp=0.0 where the particles were initially placed in random
positions. Here we observe a logarithmic decay with a satu-
ration at long times as the system forms a grain boundary
dominated state. This is consistent with the results for high
A* / fp in which the effective pinning is strongly reduced so
the system is closer to the clean limit. The pinning is neces-
sary for the creation of the smectic state and the coarsening
of the domain walls. In the inset we show the same data on a
log-log scale, indicating that a power law decay cannot be fit.

FIG. 4. Topological defects �black dots� for the system in Fig.
1�a� with A* / fp=12; �a� t=200; �b� t=2�105.

FIG. 5. �a� Pd�t� for the same system as in Fig. 1�a� at A* / fp

=12. Dashed line: logarithmic fit. Inset: log-log plot. �b� Pd�t� for a
system with the same parameters as in Fig. 5�a� with colloidal par-
ticles. Dashed line: logarithmic fit. Inset: log-log plot.

FIG. 6. Pd�t� for the same system as in Fig. 3�a� for varied
system sizes L=48 �top�, 36 �center�, and 24 �bottom�. The straight
line is a power law fit to 1/ t� with �=0.25.
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We note that there have been several studies for supercon-
ducting vortices in two dimensions interacting with random
disorder where a domain dominated ground state is observed
�11�. This state only occurs for weak disorder; if strong dis-
order is present, the entire system is disordered. In our sys-
tem the grain boundary dominated state occurs for weak or
no disorder when the system is initialized in a random con-
figuration. In the absence of pinning, the ground state would
be a completely ordered state; however, the grain boundaries
we observe do not completely coarsen at long times, and the
final state of the system is metastable or glassy.

In Fig. 8�a� we plot the decays for the same system as
in Fig. 6 at L=36 with A* held fixed at A*=6 while fp is
varied. This is in contrast to Fig. 3, where fp was kept fixed
at fp=1.5 and A* was varied. Here we consider fp=8.57, 4.8,
3.0, and 2.0, corresponding to A* / fp=0.7, 1.25, 2.0, and 3.0
in Fig. 8�a�. For weak disorder, A* / fp=3.0, the decay is rapid
with an exponent � somewhat higher than 0.25. This is con-
sistent with the results presented in Fig. 2�b� at A* / fp=4.0
where the effective pinning is weak but still present and the
exponent �=0.33. Higher values of � indicate a more rapid
decay in the defect density. When the pinning strength is
increased, there is also some creation of defects caused by
the motion over the disordered substrate which competes
with the annihilation of the defects. This results in a slower

decay of Pd, as shown in Fig. 8�a� for larger pinning forces
A* / fp=1.25, where � is smaller than 0.25. For the largest
pinning force fp=8.57, plotted in Fig. 8�a� at A* / fp=0.7, Pd
decays only briefly before saturating to a constant value at
which the rate of generation and annihilation of defects bal-
ances. These results show that if the disorder is too strong,
coarsening of the defects cannot occur.

In Fig. 8�b� we examine the effects of changing � for the
same system as in Fig. 6 with L=36, fixed A* / fp=2.0,
A*=6, and fp=3.0. In Fig. 6 the frequency is �=3�10−4.
Figure 8�b� shows Pd�t� for � /3�10−4=0.1, 0.25, 1, and 10,
from top to bottom. For very low frequencies the system
remains strongly disordered, as indicated by the saturation of
Pd at long times for � /3�10−4=0.1, since the particles have
time to become partially pinned during the portion of each
drive cycle when the ac amplitude is near zero. If the fre-
quency is high enough, as for � /3�10−4
0.25 in Fig. 8�b�,
the system is able to coarsen and a power law decay of defect
density can occur. The slope � is somewhat less than 0.25,
indicating a relatively slow decay of defect density, which is
consistent with the fact that some defects are being created
even as other defects annihilate. For the higher values of �,
such as for � /3�10−4=10 in Fig. 8�b�, a power law decay
of Pd still occurs; however, there is a cutoff in the coarsening
process at long times. This may be due to the fact that the
effective temperature is dropping due to the reduced sam-
pling of the pinning landscape, and as a result, the last of the
defects cannot be annihilated away. We note that at frequen-
cies � /3�10−4=200, the effect of the ac drive is negligible
and the system decays as if there were no ac drive and only
pinning. In this case the defect density decays logarithmi-
cally but reaches saturation at much earlier times than for the
case of no pinning illustrated in Fig. 7.

Our results showing logarithmic decay for weak effective
disorder and no disorder are in agreement with the recent
experimental results for the coarsening of domain walls in
colloidal systems where there was no disorder present. The
simulations by Valenzuela found evidence for a logarithmic
decay in the presence of quenched disorder �9�; however, the
scaling range was small and the data were very noisy so it
was not clear if those results indicated a true logarithmic
decay.

VI. SUMMARY

In summary, we have examined the coarsening of topo-
logical defects in two-dimensional systems with quenched
disorder when an external oscillating drive is suddenly
changed from a disordered steady state value to an ordered
steady state value. For quenches where the final value of the
ac drive is close to the disorder-order crossover, the de-
fect density decays as a power law in time, 1 / t�, with
�=1/4–1/3, in agreement with studies of quenched dynam-
ics in continuum models. The final state is free of grain
boundaries and the system aligns in the direction of the ac
drive. The remaining dislocations are also aligned with the
direction of the ac drive and the system forms a smectic state
as seen in previous simulations by Valenzuela. If the final
value of the ac drive is much larger than the maximum pin-

FIG. 7. Pd�t� for the same system as in Fig. 6 with L=36 and no
disorder. Inset: log-log plot of the same curve.

FIG. 8. �a� Pd�t� for the same system as in Fig. 6 with L=36 and
A*=6 for varied disorder strength. From top to bottom, A* / fp=0.7,
1.25, 2.0, and 3.0. �b� Pd�t� for the same system in �a� for varied ac
frequencies. From top to bottom, � /3�10−4=0.1, 0.25, 1, and 10.
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ning force, the defect density decays in a logarithmic fashion
and the final state is dominated by grain boundaries. We also
find that if the disorder is very weak or absent, the defect
density decreases logarithmically with time. We interpret our
results according to an effective shaking temperature, which
is low when the ac amplitude is much larger than the pinning
force or when the pinning is absent. In this case, domain
walls of defects are formed which do not completely anneal.

We specifically show that these results can be applied to
vortices in superconductors and to colloidal particles.
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